Search results for " Probability density function."
showing 10 items of 12 documents
Laplace’s Method of Integration in the Path Integral Approach for the Probabilistic Response of Nonlinear Systems
2020
In this paper the response of nonlinear systems under stationary Gaussian white noise excitation is studied. The Path Integral (PI) approach, generally employed for evaluating the response Probability Density Function (PDF) of systems in short time steps based on the Chapman-Kolmogorov equation, is here used in conjunction with the Laplace’s method of integration. This yields an approximate analytical solution of the integral involved in the Chapman-Kolmogorov equation. Further, in this manner the repetitive integrations, generally required in the conventional numerical implementation of the procedure, can be circumvented. Application to a nonlinear system is considered, and pertinent compa…
Non-Gaussian probability density function of SDOF linear structures under wind actions
1998
Abstract Wind velocity is usually analytically described adding a static mean term to a zero mean fluctuation stationary process. The corresponding aerodynamic alongwind force acting on a single degree of freedom (SDOF) structure can be considered as a sum of three terms proportional to the mean wind velocity, to the product between mean and fluctuating part of the wind velocity and to the square power of the fluctuating wind velocity, respectively. The latter term, often neglected in the literature, is responsible for the non-Gaussian behaviour of the response. In this paper a method for the evaluation of the stationary probability density function of SDOF structures subjected to non-Gauss…
Quick and Slow Components of the Hydrologic Response at the Hillslope Scale
2016
It is widely recognized that the Hortonian mechanism of runoff generation occurs in arid and semi-arid regions, generally characterized by high rainfall intensity on soils exhibiting low infiltrabilities. Differently, in steeply sloping forested watersheds in humid climates, by infiltrating through a highly permeable upper soil horizon, water moves beneath the soil surface determining a slow response. However, in most real cases, for example when in arid regions mountain forested areas take place, both (quick and slow) runoff generation processes coexist and together contribute to the hydrologic hillslope response. In this paper, based on analytical solutions of the hydrologic response, ins…
Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions
2021
[EN] In this work we consider a particular randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition. We apply the Random Variable Transformation technique to obtain the first probability density function of the solution stochastic process under general conditions. From the rst probability density function, we can obtain fundamental statistical information, such as the mean and the variance of the solution, at every instant time. The transformation considered in the application of the Random Variable Transformation technique is not unique. Then, the first probability density function can take different expressions, although essentially equivalent in terms of comp…
Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments
2014
In this paper, the probabilistic characterization of a nonlinear system enforced by Poissonian white noise in terms of complex fractional moments (CFMs) is presented. The main advantage in using such quantities, instead of the integer moments, relies on the fact that, through the CFMs the probability density function (PDF) is restituted in the whole domain. In fact, the inverse Mellin transform returns the PDF by performing integration along the imaginary axis of the Mellin transform, while the real part remains fixed. This ensures that the PDF is restituted in the whole range with exception of the value in zero, in which singularities appear. It is shown that using Mellin transform theorem…
Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardio-Respiratory Nonstationary Dynamics
2017
Objective: Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. Methods: We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characteriz…
On the use of fractional calculus for the probabilistic characterization of random variables
2009
In this paper, the classical problem of the probabilistic characterization of a random variable is re-examined. A random variable is usually described by the probability density function (PDF) or by its Fourier transform, namely the characteristic function (CF). The CF can be further expressed by a Taylor series involving the moments of the random variable. However, in some circumstances, the moments do not exist and the Taylor expansion of the CF is useless. This happens for example in the case of $\alpha$--stable random variables. Here, the problem of representing the CF or the PDF of random variables (r.vs) is examined by introducing fractional calculus. Two very remarkable results are o…
Stationary and non-stationary probability density function for non-linear oscillators
1997
A method for the evaluation of the stationary and non-stationary probability density function of non-linear oscillators subjected to random input is presented. The method requires the approximation of the probability density function of the response in terms of C-type Gram-Charlier series expansion. By applying the weighted residual method, the Fokker-Planck equation is reduced to a system of non-linear first order ordinary differential equations, where the unknowns are the coefficients of the series expansion. Furthermore, the relationships between the A-type and C-type Gram-Charlier series coefficient are derived.
Solving fully randomized higher-order linear control differential equations: Application to study the dynamics of an oscillator
2021
[EN] In this work, we consider control problems represented by a linear differential equation assuming that all the coefficients are random variables and with an additive control that is a stochastic process. Specifically, we will work with controllable problems in which the initial condition and the final target are random variables. The probability density function of the solution and the control has been calculated. The theoretical results have been applied to study, from a probabilistic standpoint, a damped oscillator.
Anomalous diffusion and nonlinear relaxation phenomena in stochastic models of interdisciplinary physics
2020
The study of nonlinear dynamical systems in the presence of both Gaussian and non-Gaussian noise sources is the topic of this research work. In particular, after shortly present new theoretical results for statistical characteristics in the framework of Markovian theory, we analyse four different physical systems in the presence of Levy noise source. (a) The residence time problem of a particle subject to a non-Gaussian noise source in arbitrary potential profile was analyzed and the exact analytical results for the statistical characteristics of the residence time for anomalous diffusion in the form of Levy flights in fully unstable potential profile was obtained. Noise enhanced stability …